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A formal description of the deflation process of a soap bubble attached to a cylindrical tube is
provided, with emphasis on quantifying viscous and unsteady effects. Differing from prior studies,
the proposed theoretical framework maintains its validity across a wide spectrum of parameter values
that define the system. The model is validated through experimental results that can be reproduced
at home using liquid soap and a straw, emphasizing its educational aspects.

I. INTRODUCTION

Soap bubbles have been used for centuries to entertain
and enchant children. They are held together by surface
tension, which causes the pressure of the air inside to be
larger than the atmospheric pressure. This difference in
pressure causes bubbles to deflate when a hole is made on
their surface, similar to unknotted party balloons. This
phenomenon can be observed when trying to blow soap
bubbles using an ordinary straw: if the inflated bubble
does not detach from the straw, it will start deflating as
soon as lips are removed from the other end.

The problem of a bubble deflating through a thin cylin-
drical tube was first introduced in Ref. 1 and was further
explored in Ref. 2. In both works, the authors find that
the deflation time is proportional to the fourth power
of the initial radius of the bubble and to the length L
of the tube. This result implies that the deflation time
for a bubble attached to an infinitely short tube is null.
This issue is not just a mere abstract fact, but also has
experimental implications: a fairly thin ring constitutes
precisely the limit L → 0 of a tube. In this case, the re-
sults of Refs. 1 and 2 are not so useful, as will be shown
in this work. On the other hand, they may constitute a
good approximation if L is large enough. In this work,
the limit case L → 0 will be part of a broader class of
cases, which will be referred to as the inviscid case and
distinguished from the viscous one. The main purpose
of this analysis is to derive and validate a more general
model that works regardless of the value of L, as well as
all other parameters.

The configuration under consideration is characterized
by the following parameters:

• R0, the initial radius of the bubble;

• L, the length of the straw;

• rstraw, the cross-sectional radius of the straw;

• A = πr2straw, the cross section of the straw;

• ρ, the density of air;

• µ, the viscosity of air;

• σ, the surface tension of soap.

For the remaining physical quantities, R(t) is the instan-
taneous radius of the bubble, while vi and pi are the
velocity and pressure of air at some point i in space.
Referring to Fig. 1, Bernoulli’s equation will be used

to link quantities inside the bubble - points 1 or 3 - to
quantities just outside the straw - point 4. The correct
application of Bernoulli’s equation dictates some of this
model’s assumptions. Bernoulli’s equation will appear
in three different versions in the analysis, and distinct
names will be assigned to each form in order to avoid
confusion. The least general form of the equation—that
is, the one requiring the most assumptions—will be re-
ferred to as the Restricted Bernoulli’s Equation (RBE),
and is written as:

p(r⃗ ) +
1

2
ρv2(r⃗ ) + ρgz = const. (1)

which holds under the assumptions of irrotational, steady
and laminar flow in an inviscid and incompressible fluid.∗

The generalization of Eq. (1) to viscous fluids will be
referred to as the Viscous Bernoulli’s Equation (VBE).
Finally, when unsteady effects will be incorporated into
the VBE in Sec. IV, it will be referred to as the Unsteady
Viscous Bernoulli’s Equation (UVBE).
Air will be assumed to be incompressible throughout

the entire work. This assumption is justified by the fact
that the highest velocity in the system is two orders of
magnitude smaller than the speed of sound. Hence, the
continuity equation reads

−4πR2(t)
dR

dt
= AvS(t), (2)

where vS(t) = v3 = v4 is the homogeneous velocity of air
inside the straw. It is important to note that vS(t) is
homogeneous throughout the cross section of the straw
only if µ → 0. Hence, when viscous effects cannot be
neglected, vS(t) will represent the average velocity on
the cross section. As for the velocity inside the bubble,

∗ If the assumption of irrotationality alone does not hold, the va-
lidity of Eq. (1) is restricted to a single streamline rather than
the entire flow.
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FIG. 1. Schematization of the bubble-straw system.

it will be assumed to be negligibly small. The validity of
this assumption will be analyzed in Sec. IV.

The last fundamental assumption of this model con-
cerns the shape of the bubble, which will be assumed to
be spherical. Of course, this assumption is broken when
the radius of the bubble becomes comparable to the ra-
dius of the straw.2 However, the correction to the total
deflation time is negligible, as will be shown in Sec. III.

Finally, it should be noted that the result depends nei-
ther on the acceleration of gravity g nor on the inclination
of the straw. This feature can be explained by means of
Archimedes’ law: no work needs to be done to move up a
volume of fluid inside a larger volume of the same fluid.†

For the same reason, the deflation time is the same for
vertical and horizontal straws, assuming that all other

† The mathematical justification proceeds as follows. Referring to
Fig. 1, the RBE is applied between points 1 and 4, under the
assumption of inviscid air:

p1 +
1

2
ρv21 + ρgz1 = p4 +

1

2
ρv24 + ρgz4, (3)

where zi denotes the vertical coordinate. Given that z4 − z1 ≈ L,
and using the Young–Laplace law p1 = p2 + 4σ

R(t)
, along with

Stevin’s law p2 = p4 + ρg(z4 − z2) ≈ p4 + ρgL, the equation re-
duces to

4σ

R(t)
+

1

2
ρv21 =

1

2
ρv24 , (4)

which shows that the dependence on g cancels out. This outcome
is consistent with physical intuition: in the absence of the bubble,
no airflow would occur, i.e., v1 = v4 = 0. Indeed, even in a very
long vertical tube in open air, no flow is observed despite the
presence of a pressure difference between the top and bottom
ends, due to Stevin’s law. The same result holds when viscous
and unsteady effects are taken into account, because the terms
p(r⃗ ) and ρgz remain unchanged.

quantities are kept fixed. The same holds true when vis-
cous and unsteady effects are taken into account. Thus,
referring to Fig. 1, the RBE, relating quantities in points
1 and 4, simply reads

4σ

R(t)
+

1

2
ρv21 =

1

2
ρv24 , (5)

where

4σ

R(t)
= p1 − p2 (6)

is the pressure difference due to the Young–Laplace
equation.3

II. THEORETICAL MODELS

Before delving into analytical calculations, it is worth
saying something about the relationship between quan-
tities that characterize the system. Through the use of
dimensional analysis, specifically the Buckingham π the-
orem and the principle of similitude,4, 5 it is possible to
find how the deflation time depends on the other quan-
tities. In the case where viscous effects are negligible, it
is reasonable to assume that the deflation time only de-
pends on R0, A, σ and ρ. Using the tools aforementioned,
the functional relation one finds is

tI =

√
ρ

σ
R

3/2
0 F

(
R2

0

A

)
, (7)

where the subscript I refers to the inviscid case and F(x)
is a generic real-valued function.
In contrast, if viscous effects are not negligible, it is

reasonable to assume that the deflation time depends on
R0, A, σ, L and µ. It does not depend on the density ρ
because, in the viscous regime, most of the energy stored
on the surface of the bubble is dissipated in the straw by
viscous forces, which do not carry any information about
the density. Under such assumptions, one gets

tV =
µ

σ
R0 G

(
R2

0

A
,
L

R0

)
, (8)

where the subscript V refers to the viscous case and
G(x, y) is a generic real-valued function. The results of
the upcoming analysis must respect Eqs. (7) and (8).

The inviscid case is determined by the solution of
Eqs. (2) and (5). Assuming the air velocity inside the
bubble is negligible, as it is in the initial moments of
deflation, the system of equations reduces to

4πR2(t)
dR

dt
= −A

√
8σ

ρR(t)
. (9)

Separating variables and integrating leads to

R(t) =

(
R

7/2
0 − 7

√
2A

4π

√
σ

ρ
t

)2/7

, (10)
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which implies the following expression for the deflation
time

tI =
4πR

7/2
0

7
√
2A

√
ρ

σ
. (11)

It can be seen that Eq. (11) respects Eq. (7) with

F(x) = 4πx/7
√
2.

If viscous effects are not negligible, the RBE can no
longer be applied. In this case, a suitable replacement is
Poiseuille’s law,6 which in this context reads:

p3 − p4 − ρgL =
8πµLQ(t)

A2
, (12)

where Q(t) = AvS(t) is the volumetric flow rate of air in
the straw. Equation (12) reduces to

4σ

R(t)
=

8πµL

A
vS(t). (13)

As stated previously, in this case vS(t) represents the av-
erage velocity of air over the entire cross section. Solving
Eqs. (2) and (13), one finds

R(t) =

(
R 4

0 − σA2

2π2µL
t

)1/4

, (14)

Hence, the deflation time is

tV =
2π2µLR 4

0

σA2
, (15)

which respects Eq. (8) with G(x, y) = 2π2 x2y. The vis-
cous model described by Eqs. (14) and (15) was used in
Refs. 1 and 2.

In summary, the deflation time is proportional to R
7/2
0

in the inviscid model, while it is proportional to R 4
0 in the

viscous one. A difference in the functional dependencies
suggests that a more general expression for the deflation
time should exist.

The fundamental difference between the previous mod-
els lies in the mechanism that prevents air from escaping
the bubble instantaneously. The inviscid model accounts
only for inertia, whereas the viscous model considers only
viscosity.‡ As a result, the inviscid model remains unaf-
fected by the length of the straw, while the viscous model
does depend on it. Specifically, as L → 0, while keeping
the other parameters fixed, the viscous model predicts
tV → 0, whereas the inviscid model always yields a con-
stant deflation time. This is consistent with expectations,
as air inertia ensures a nonzero deflation time even when
a small hole is punctured in the bubble.§

‡ Indeed, in the inviscid model, the outflow velocity is inversely
proportional to the square root of the air density, which repre-
sents its inertia. In contrast, the purely viscous model predicts
an outflow velocity that is inversely proportional to the air vis-
cosity.

§ A slight variation of this scenario was analyzed in Ref. 7.

A third, more comprehensive model should incorpo-
rate both inertia and viscosity, correctly converging to
the expected limiting behavior for both long, thin straws
and short, wide straws. The aim of the final part of
this section is to find a more general approach to the
problem, which unifies the RBE and the concept of vis-
cosity. The most natural way of doing so is to generalize
Bernoulli’s equation to viscous fluids, thus writing the
Viscous Bernoulli’s Equation (VBE) as done in Ref. 8.¶

By applying it between points 1 and 4, one obtains:

4σ

R
=

1

2
ρ v2S +∆pvisc, (16)

where ∆pvisc is the pressure drop due to viscosity, given
by Eq. (12). A qualitative justification for the presence
of this term lies in the fact that the pressure difference
between the two ends—namely, the quantity on the left-
hand side—is partially converted into kinetic energy den-
sity and partially into energy density dissipated due to
viscosity. For a more detailed discussion, see Ref. 8,
specifically Section F, which addresses a more general
case than the one considered here. Equation (16) reads

4σ

R
=

1

2
ρ v2S +

8πµL

A
vS , (17)

whose only physical solution is

vS(R) =

√(
8πµL

ρA

)2

+
8σ

ρR
− 8πµL

ρA
. (18)

Inspection of Eq. (18) suggests factoring out a common
term and introducing the dimensionless coefficient

γ =
σρA2

8π2µ2L2R
=

σρ

8µ2

r4straw
L2R

, (19)

which can also be expressed as the ratio of two char-
acteristic lengths of the system: a purely geometric
one, Λ ≡ r4straw/L

2R, and a material-dependent one,
λ ≡ 8µ2/σρ, which in the present case is on the order of
100 nm. Note that both Λ and γ increase monotonically
with time, as the bubble progressively shrinks. Hence,
Eq. (18) can be written as

vS =
8πµL

ρA

(√
1 + γ − 1

)
. (20)

¶ In Ref. 8 the authors highlight a common misconception in fluid
dynamics: Bernoulli’s equation and Poiseuille’s law are often
regarded as mutually exclusive. However, this view depends on
which form of Bernoulli’s equation is being considered. While
the statement holds true for the RBE, it does not apply to its
more general forms. In fact, the RBE and Poiseuille’s law can be
seen as two limiting cases of a more general relation, which is the
Viscous Bernoulli’s Equation (VBE). When the viscosity µ → 0,
the general equation reduces to the RBE. Conversely, when the
kinetic term ρv2/2 is negligible, it reduces to Poiseuille’s law.
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As will be evident shortly, it is convenient to rewrite
Eqs. (11) and (15) by making use of the definition pro-
vided in Eq. (19). A simple substitution yields:

tI =
ρR3

0

7µL
γ
−1/2
0 , (21)

tV =
ρR3

0

4µL
γ−1
0 , (22)

where γ0 ≡ γ(R = R0) ≡ γ(t = 0). Substituting Eq. (18)
in Eq. (2), one obtains

t =
π2µL

σA2

(
R4

0 −R4
)
+

4π2µL

σA2

∫ R0

R

R′ 3
√

1 + γ0
R0

R′ dR
′

=
ρ

2µL

(
ρσA2

8π2µ2L2

)3 ∫ γ

γ0

√
1 + γ′ + 1

γ′ 5 dγ′ (23)

=
ρR3

0

2µL
γ3
0

∫ γ

γ0

√
1 + γ′ + 1

γ′ 5 dγ′

Thus, the deflation time becomes

tG =
π2µL

σA2
R4

0 +
4π2µL

σA2

∫ R0

0

R′ 3
√
1 + γ0

R0

R′ dR′ =

=
ρR3

0

2µL
γ3
0

∫ ∞

γ0

√
1 + γ′ + 1

γ′ 5 dγ′, (24)

where the subscript G refers to the generalized case.
For clarity, both expressions—with and without γ—have
been retained in the equations. As can be seen by in-
specting the integral in γ in Eq. (24), if γ0 ≫ 1 the inte-
grand behaves asymptotically as γ−4.5 and, consequently,
Eq. (24) reduces to Eq. (21). In contrast, if γ0 ≪ 1, the
dominant contribution to the integral comes from the
asymptotic limit 2γ−5, which leads tG to coincide with
Eq. (22). This could already be inferred from Eq. (20):
for γ ≫ 1, it reduces to the outflow velocity in the inviscid
regime, whereas for γ ≪ 1, it corresponds to the veloc-
ity in the viscous regime. Referring back to the scenario
discussed in Sec. I, and assuming all other parameters
remain constant, these two regimes correspond, respec-
tively, to extremely short and extremely long straws.

The expressions in Eqs. (21), (22) and (24) can be
rewritten in the following form:

µL

ρR3
0

tdeflation = H(γ0), (25)

where

H(γ0) =



1

7
√
γ0

, (I)

1

4γ0
, (V)

1

2
γ3
0

∫ ∞

γ0

√
1 + γ′ + 1

γ′ 5 dγ′, (G)

(26)

is a dimensionless-valued function. This means that the
deflation times predicted by the three models can be com-
pared on the same plot without assigning any specific val-
ues to the physical parameters µ, σ, and ρ. This analysis
will be carried out in the next section.

III. EXPERIMENTAL AND NUMERICAL
VALIDATIONS

A. Experimental setup and measurements

In order to determine which of the previous models
best describes the deflation process, experimental tests
were carried out using the experimental setup shown in
Fig. 2. Drinking straws with a cross-sectional area of
16.19mm2 and varying lengths were used, along with
empty plastic pen refills of 3.14mm2 cross-sectional area
and 11.2 cm length. A commercially available children’s
soap solution (97% water and 3% of an unspecified sur-
factant mixture) produced by the company Dulcop Inter-
national was employed.∗∗ Data were collected at 19 ◦C
under dry weather conditions, so it was reasonable to
assume ρ = 1.22(1) kg/m3. The remaining quantities, σ
and µ, were treated as free parameters in the numeri-
cal fits, as their values cannot be precisely determined a
priori without appropriate measurement tools, such as a
surface tensiometer and a viscometer.
Referring to Fig. 2(a-b), the initial radius of each bub-

ble was set by observing the shadow cast on the paper
screen, ensuring that the outermost edges matched the
reference length h = 25.0 cm. The relationship between
R0 and the width of the shadow h is given by

R0 =
d1 h√

h2 + 4 (d1 + d2)
2
. (27)

Due to the propagation of errors, the uncertainty relative
to R0 is

∆R0 =
4d1 (d1 + d2)

2
∆h(

h2 + 4 (d1 + d2)
2
)3/2 +

h∆d1/2√
h2 + 4 (d1 + d2)

2
,

(28)
where ∆h and ∆d1/2 ≡ ∆d1 = ∆d2 are the errors on the
respective lengths. ∆d1/2 = 1mm due to the scale of
the measuring tape, while it is reasonable to assume
∆h ≈ 2mm due to the thickness of the dark edge of the
shadow cast on the paper screen. In all experiments, the
distances d2 = 50.0 cm and h = 25.0 cm were kept fixed,
while measurements were taken on bubbles with an ini-
tial radius ranging from 2.0 cm to 4.0 cm. As a result,
the distance d1 between the LED and the bubble varied

∗∗ Essentially, any commercial bubble solution sold in toy stores is
suitable; we simply used the first one we had available.
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FIG. 2. Experimental setup used for the validation of the theoretical models. The straw was attached to a plastic ruler using
ordinary tape. Before each measurement, the lower end of the straw was moistened with the soap solution contained in a plastic
cap. Bubbles were inflated by blowing into the upper end of the straw by mouth. The initial radius of each bubble was set
by comparing the bubble’s shadow—illuminated using an LED—with the reference length drawn on the paper screen. Once
the desired value of R0 was reached, the lips were lifted. From that moment, the deflation time was recorded. Proportions
between distances drawn in panel (a) are different in the real configuration, shown in panel (b): they were exaggerated for
clarity reasons.

from approximately 10 cm to 24 cm. Consequently, the
uncertainty in R0 ranged between one-third and one-half
of a millimeter as given by Eq. (28).

Two types of measurements were conducted. The first
involved recording the deflation time with a stopwatch,
performing ten measurements for each configuration, and
calculating the average times, which are reported in Ta-
ble I. The second consisted of filming the deflation of
bubble with an initial radius of 4.0 cm, attached to a
10.0 cm straw, allowing the experimental function R(t)
to be reconstructed using video analysis software. This
approach, despite requiring significantly more effort, pro-
vided more precise data, enabling the extraction of µ and
σ through numerical fits.

Figure 3 shows the comparison among the three mod-
els introduced at the end of Sec. II, as a function of the
parameter γ0, together with the experimental data points
reported in Table I. It is clearly visible that the experi-
mental points follow the curve corresponding to the gen-
eralized model. This result justifies performing a numer-
ical fit of the experimental data based on the generalized
model described in Eq. (23), in order to determine the
values of the parameters µ and σ. For the same rea-
son, there is no point in performing fits based on the two
simpler models.

B. Numerical fit

Six different videos of deflating bubbles with
R0 = 4.0 cm and L = 10.0 cm were analyzed using
Tracker,9 a video analysis tool that, among other fea-
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γ0
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L
t d
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ti
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3 0
)
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Experimental

FIG. 3. Comparison of the three models. The experimental
data points are taken from the configurations described in Ta-
ble I. The two measurements related to the empty pen refills
are not reported because they are associated with γ0 values
on the order of 10−6.

tures, can measure instantaneous values of distances in
video frames. The yellow star curve in Fig. 4 was ob-
tained by averaging the six sets of data, each consisting
of about 55 couples of values (ti, R(ti)). A numerical fit
was performed based on these experimental data, using
the least squares method and the generalized model de-
scribed by Eq. (23), which includes two free parameters,
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TABLE I. Data collected from the experiments. Each value in
the time column is the average of ten different measurements,
with the uncertainty corresponding to the sample standard
deviation. The uncertainty in the R0 values ranges from one-
third to half a millimeter, as mentioned in the discussion fol-
lowing Eq. (28).

A
(mm2)

L
(cm)

R0

(cm)
γ0 (no
dim.)

Deflation
time (s)

16.19

10.0

4.0 0.74 17.51(25)

3.5 0.85 10.69(14)

3.0 0.99 6.28(10)

2.5 1.19 3.15(6)

2.0 1.48 1.36(3)

18.9

4.0 0.21 28.59(28)

3.5 0.24 16.74(18)

3.0 0.28 9.26(12)

2.5 0.33 4.44(8)

2.0 0.42 1.93(3)

7.0

3.0 2.02 5.32(8)

2.5 2.42 2.56(17)

2.0 3.03 1.18(8)

5.3
3.0 3.52 4.73(11)

2.5 4.22 2.40(13)

28.4 4.0 0.09 42.25(44)

37.8 4.0 0.05 55.54(52)

4.0 4.0 4.64 11.73(24)

3.14 11.2
2.5 3.6× 10−6 65.71(67)

2.0 4.5× 10−6 26.39(41)

i.e. σ and µ. The fitted parameters are

σG = 0.0248(5) kg/s2, µG = 1.841(3)×10−5 Pa · s. (29)

The values in Eq. (29) are compatible with those com-
monly known for soapy water and air at room temper-
ature: the surface tension of typical soapy water is ap-
proximately 0.025 kg/s2,10 while the viscosity of air lies
in the range (1.78–1.85) · 10−5 Pa · s. From now on, the
following set of experimental and fitted parameters

R0 = 4.0 cm, L = 10.0 cm, A = 16.19mm2,

σ = 2.48× 10−2 kg/s2, µ = 1.84× 10−5 Pa · s,
ρ = 1.22 kg/m3,

(30)

0 2 4 6 8 10 12 14 16 18
t (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
(t

)(
cm

)

Experimental points
Fitting curve

FIG. 4. Experimental curve and numerical fit based on
Eq. (23). The initial irregularities of the experimental curve
are due to the inevitable oscillations of the bubbles caused by
air displaced by the movement of arms.
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FIG. 5. Percentage difference between measurements and
model predictions, as a function of γ0. The two leftmost data
points for the inviscid model error are not shown in the plot,
as their values exceed 100. It was not possible to explore val-
ues beyond γ0 = 5 because the corresponding deflation times
drop below one second, making it difficult to perform mea-
surements with an acceptable degree of precision.

corresponding to λ ≈ 9× 10−8 m and γ0 ≈ 0.74, will be
referred to as the reference configuration.
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C. Comparison between the models

Using the parameters extracted from the numerical fit
in Eq. (29), the theoretical predictions of the three mod-
els were compared with the experimental measurements
for each configuration listed in Table I. The results of this
analysis are shown in Fig. 5, where the percentage differ-
ences are plotted as a function of the parameter γ0. As
already seen in Fig. 3, the predictions of the generalized
model are noticeably more accurate than those of the
simpler models. Moreover, the viscous model provides
a very good description of the evolution for γ0 ≪ 1, but
fails outside this regime. In contrast, the inviscid model
performs poorly for small values of γ0, but the relative
error decreases as γ0 increases. However, in all cases, the
generalized model consistently outperforms both.

Figure 6 presents a numerical comparison of the in-
viscid, viscous and generalized model predictions across
three regimes, classified according to the value of γ0. It is
evident that for very low values of γ0, the viscous model
offers a good approximation, whereas it fails at higher
values—contrary to the inviscid model. In the intermedi-
ate regime, however, neither model succeeds in accurately
capturing the dynamics of the system. This provides fur-
ther evidence confirming the superior effectiveness of the
generalized model presented in this work.

Finally, a few remarks should be made about the air-
flow velocity. Since the radius of the bubble tends to zero
in the final stages of the process, the theoretical outflow
velocity diverges due to the form of the Young–Laplace
law, whose denominator approaches zero—this also leads
to a divergence in the Reynolds number.†† However,
in the final moments of the process, the bubble can no
longer be approximated as a whole sphere. In fact, by
examining the final frames in slow motion, it becomes ev-
ident that the bubble transforms into an ellipsoidal cap,
with its curvature radii never reaching zero.‡‡ Neverthe-
less, according to the present modeling, the time spent

†† The Reynolds number associated with the airflow inside the
straw/refill is given by Re = 2 vS rstraw ρ/µ. When the radius of
the bubble becomes very small, Re can exceed 2000, indicating
a transition to turbulent flow. The main issue with this phe-
nomenon is that it cannot be studied using Bernoulli’s equation,
not even in its most general form. This is because Bernoulli’s
theorem relies on the assumption of laminar flow, meaning that
streamlines remain smooth and non-intersecting. Turbulence,
however, causes streamlines to continuously intertwine and break
down over time, making the system inherently unsteady. How-
ever, in the configurations analyzed in this work, turbulence is
expected to arise when the radius of the bubble reaches a few
millimeters, making it even shorter-lived than the unsteady ef-
fects that will be discussed in Sec. IV. Consequently, it is not
experimentally detectable and does not compromise the overall
discussion.

‡‡ A similar feature is observed in Ref. 2, where bubbles are ap-
proximated as spherical caps in the final moments of the process:
as they deflate, the radius reaches a minimum before starting to
grow again. They do not deform into ellipsoidal caps since they
rest on a tube rather than hanging from it, as in the present case.

in the final transient is very short: Eq. (2) implies

dt = −4πR2(t)

AvS(t)
dR ≡ f(t) |dR|, (31)

where the function f(t) exhibits a sharp decrease in the
final stages of the deflation process, due to its numerator
approaching zero and its denominator becoming large.
In fact, both numerical simulations and experimental re-
sults show that the radius goes from R = 1 cm to R = 0 in
approximately one tenth of a second for the reference con-
figuration described in Fig. 4. Thus, the bubble spends
only a negligible portion of the total deflation time in
the transient phase where R ∼ rstraw. As a result, the
phenomena that cause deviations from the whole-sphere
approximation have little impact.

IV. UNSTEADY EFFECTS

So far, steady fluid dynamics equations have been used.
Experimental evidence has shown that some models gen-
erally fail to describe the phenomenon correctly, such as
those based on Eqs. (10) and (14), while the model based
on Eq. (17) has succeeded despite the fact that airflow is
not strictly steady, either at the beginning or at the end
of the deflation process. It is not steady during the first
moments because the air outflow velocity goes from zero
to a non-zero value given by Eq. (18). As for the final
moments, the velocity changes very rapidly because the
bubble deflates faster and faster. One might be happy
to say that all the approximations made so far are le-
gitimate because the experimental results agree with the
model based on the equation, but this is not the case:
this section is devoted to mathematically and numeri-
cally understanding why the previous approximations are
reasonable or not.
When dealing with unsteady flows, Bernoulli’s equa-

tion must be generalized as described in Ref. 8, 11–16. In
the current case, the Unsteady Viscous Bernoulli’s Equa-
tion (UVBE) connecting quantities inside the bubble to
quantities just above the straw reads

ρ

∫ s⃗4

s⃗1

∂v⃗

∂t
·d⃗s+1

2
ρ
(
v24 − v21

)
− 4σ

R(t)
+
8πµL

A
vS = 0, (32)

where subscripts are relative to the schematization shown
in Fig. 1. Assuming that the air velocity inside the bubble
is negligible compared to that in the straw, the previous
equation becomes

1

2
ρv2S − 4σ

R(t)
+

8πµL

A
vS ≈ −ρ

∫
straw

∂vS
∂t

ds, (33)

The authors also emphasize the necessity of setting a final radius
value to prevent the deflation time from diverging.
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FIG. 6. Comparison between the three models introduced in Sec. II, evaluated for three representative values of γ0—a small,
an intermediate and a large one. (γ0 ≈ 0.05) R0 = 2 cm, L = 11 cm, rstraw = 1mm; (γ0 ≈ 1) R0 = 4 cm, L = 10 cm,
rstraw = 2.45mm; (γ0 ≈ 100) R0 = 3 cm, L = 1 cm, rstraw = 2.27mm.

where the last approximation is justified by the fact that
the largest contribution in the integral is given by the
path inside the straw. Since vS is homogeneous in the
straw, one gets

1

2
ρv2S(t)−

4σ

R(t)
+

8πµL

A
vS(t) = −ρL

dvS
dt

. (34)

A more general version of Eq. (34) can be obtained by
taking into account non-zero values of the air velocity in-
side the bubble. In this case, the evolution of the system
is ruled by

(35)

ρA

12πR(t)

dvS
dt

+
ρA2v2S(t)

96π2R4(t)
+ ρL

dvS
dt

+
1

2
ρv2S(t)−

4σ

R(t)
+

8πµL

A
vS(t) = 0,

which is derived in Appendix A using energy consid-
erations. However, for the reference configuration in
Eq. (30), numerical calculations show that neglecting the
air velocity inside the bubble, i.e. ignoring the first two
terms in Eq. (35), yields a difference in the deflation time
on the order of one tenth of a millisecond. This was to
be expected, since the ratio between the mean kinetic
energy densities in the bubble and in the straw is

1
2ρv

2
CM

1
2ρv

2
S

=

(
dR
dt

)2
v2S

Eq. (2)
=

(rstraw
2R

)4
, (36)

which is on the order of 10−5 for most of the duration
of the process. Therefore, the assumption of null veloc-
ity within the bubble, made in the previous sections, is
legitimate. So, it is possible to study the evolution of
the system by numerically solving the continuity equa-
tion and Eq. (34), with the initial conditions R(0) = R0

and vS(0) = 0.

The solution of Eqs. (2) and (34) corresponds to the
green dotted curves in Fig. 7. As shown in Fig. 7(c),
the deflation times of the generalized and unsteady cases
differ by approximately 0.07 s, equivalent to a 0.4% vari-
ation. This difference is mainly due to the difference in
velocity during the initial transient, which is shown in
Fig. 7(d). As a result, regardless of the parameter values
describing the problem, the steady approximation always
underestimates the deflation time compared to the un-
steady solution. To better understand such connection,
it is possible to obtain an analytical expression for the
outflow velocity vS(t) in the initial transient by replac-
ing R(t) → R0 in Eq. (34).§§ This leads to

(37)vS(t) =

√(
8πµL

Aρ

)2
+

8σ

ρR0
tanh

tanh−1

(
2
√
2πµL√

A2ρσ/R0 + 8π2µ2L2

)
+

t

2L

√(
8πµL

Aρ

)2
+

8σ

ρR0

− 8πµL

Aρ
,

§§ Such choice is justified by the following argument. In the first
moments of the process, the outflow velocity is really small and
the surface of the bubble is the largest. As a consequence, the

time derivative of R(t) in Eq. (2) is really small, hence R(t) ∼ R0

if t ≪ 1 s.
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FIG. 7. Comparison between the solution of Eq. (17) (gener-
alized) and the solution of Eq. (34) (unsteady), in the case of
the reference configuration described by Eq. (30). Panels (c)
and (d) are zooms of, respectively, panel (a) and (b). As it can
be noticed in (d), the outflow velocity in the unsteady case
rapidly grows from zero to the value described by Eq. (18),
as predicted by Eq. (37).

which corresponds to the dotted green curve in Fig. 7(d).
As expected, Eq. (37) tends to Eq. (18) after the unsteady
initial transient, whose duration is of the order of the
characteristic time

τ =
2L√(

8πµL
Aρ

)2
+ 8σ

ρR0

=
Aρ

4πµ
√
1 + γ0

≈ 0.06 s (38)

for the reference configuration in Eq. (30). Further argu-
ment for the duration of the initial unsteady transient is
given in Appendix B.

Ultimately, unsteady effects can be neglected for all
the experimental configurations analyzed in Sec. III, as
the initial value of the radius is such that R ≫ rstraw for
most of the duration of the process. If this were not the
case, the green and violet curves in Fig. 7(a-b) would de-
tach, hence unsteady effects should be taken into account.
For example, if R0 = 1 cm, L = 10 cm and A = 16.2mm2,
corresponding to γ0 ≈ 2.9, numerical simulations show
that the deflation time of the unsteady solution is about
30% longer than the value obtained using the steady ap-
proximation, which yields a duration of approximately
0.1 s. Experimental checks were not performed for such
short-duration phenomena, as capturing a sufficient num-
ber of frames would require a high-performance camera.

V. CONCLUSION

In conclusion, the new mathematical model proposed
based on Eq. (17) proved to be excellent for describing
the phenomenon of bubble deflation. This is not true for
the simpler models proposed in the literature, which, all
parameters being equal, predict shorter deflation times.
This difference is far from negligible when, for exam-
ple, one wants to determine the surface tension of soap
with a deflation experiment, as done in Ref. 17. Fur-
thermore, unsteady effects were shown to be irrelevant
for bubbles whose initial radius is much larger than the
cross-sectional radius of the straw, as for the analyzed
experimental configurations.

Appendix A: Unsteady evolution

When some of the hypotheses of Bernoulli’s theorem
are missing, it is necessary to use one of its generaliza-
tions, which has already been discussed in Refs. 11 and
12. For an unsteady, non-turbulent, irrotational flow in
an incompressible and viscous fluid, as observed from an
inertial frame of reference, it reads∫ s⃗2

s⃗1

(
∂v⃗

∂t
− µ

ρ
∇2v⃗

)
· d⃗s+

[
p

ρ
+

1

2
v2 + ϕ

]2
1

= 0, (A1)

where 1 and 2 are two generic points of the fluid. Inte-
grating this equation is a bit messy due to the viscous
term. An alternative method to find the equation that
describes the evolution of the system involves energy con-
siderations. The balance of energy can be written as

dWST

dt
=

d

dt

(
KB +KS

)
+ K̇out + P, (A2)

where WST is the work done by the surface tension, KB

and KS are the kinetic energies of the air inside the bub-
ble and in the straw, K̇out is rate at which kinetic energy
exits the straw and P is the power dissipated by viscous
forces. Physically speaking, Eq. (A2) means that part of
the energy stored on the surface of the bubble becomes
kinetic energy, while the remaining part is lost due to
viscosity. As the radius of the bubble decreases by a neg-
ative amount dR, the work done by the surface tension
is

dWST = −2σ dS = −16πσR dR. (A3)

As for the kinetic energy of air inside the bubble, it has
been neglected until now. To establish whether such an
assumption is reasonable, KB must be compared to the
other terms in Eq. (A2). Given that the airflow in the
bubble is not symmetric with respect to its center, it is
extremely difficult to exactly evaluate KB . However, it
can be estimated by focusing on the motion of the center
of mass. If M is the mass of the air enclosed in the
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bubble, then

KB =
1

2
Mv2CM =

2

3
πρR3

(
dR

dt

)2

=
ρA2

24π

v2S
R

, (A4)

where Eq. (2) was used. It should be mentioned that
Eq. (A4) loses its validity when R ∼ rstraw. However, as
shown in Sec. III, if R0 ≫ rstraw then the amount of time
spent in this stage is negligible compared to the deflation
time. The kinetic energy of the air flowing in the straw
is

KS =
1

2
ρv2SAL, (A5)

whereas the rate at which kinetic energy exits the straw
is

K̇out =
1

2

dm

dt
v2S =

1

2
ρAv3S . (A6)

Finally, the expression for the power dissipated by vis-
cous forces in a laminar flow was derived in Ref. 18. In
the configuration under exam, it reads

P = µ

∫
|∇v |2 dV, (A7)

where the integration is performed over the entire volume
of air enclosed in the straw. The velocity of air inside the
straw is given by

v(r) =
∆p

4µL

(
r2straw − r2

)
, (A8)

where r represents the radial coordinate. Performing the
integration and exploiting Poiseuille’s law, one finds

P = 8πµLv2S . (A9)

After performing the time derivatives in Eq. (A2), substi-
tuting Eq. (2) and dividing the entire equation by AvS ,
one gets

(A10)

ρA

12πR

(
dvS
dt

+
Av2S
8πR3

)
+ ρL

dvS
dt

+
1

2
ρv2S − 4σ

R
+

8πµL

A
vS = 0.

This equation is coupled with Eq. (2): they should be
solved simultaneously with appropriate initial conditions
to find R(t) and vS(t).

Appendix B: Duration of the initial transient

Apart from the reasons given in Sec. IV, the steadiness
assumption for the initial transient in the viscous case can
be justified by the following argument. As shown in Ref.
19, the velocity profile inside the straw at some time t
after air starts flowing is

vS(r, t) =
∆p

4µL

(
A

π
− r2

)
(B1)

− 2A∆p

πµL

∞∑
n=1

1

λ3
n

J0

(
λnr

√
π/A

)
J1 (λn)

e−λ2
nπµ t/ρA,

where Jk are the Bessel functions of the k-th order, λn

are the positive roots of J0 and, referring to Fig. 1,
∆p ≡ p3 − p4 − ρgL (vertical straw). Since the decay
time of each term within the sum is τn ≡ ρA/πµλ2

n,
¶¶

the longest surviving contribution is due to n = 1. Since
λ1 ≈ 2.4, the longest decay time is τ1 ≈ 0.06 s for the ref-
erence configuration described by Eq. (30), further con-
firming that the effects due to the initial unsteadiness can
be neglected.
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