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1 Kinematics and Dynamics

Problem 1.1 (Bicycle Wheel). Imagine taking a photo of a rolling bicycle wheel that
does not slip. The wheel can be schematized as a circle connected to its center by a
large number of spokes. Since, to take a photo, the camera lens is opened for a short but
non-zero time δt, most of the image will appear blurred because the elements of the wheel
move during the lens opening. However, there are points where the photo is perfectly in
focus. Find them.

Problem 1.2 (Motion of Two Masses on a Table). Two point masses m1 and m2

are connected by an inextensible string of length ` and negligible mass. They are placed
on a perfectly smooth horizontal table. The following figure shows the configuration from
above (the dimensions of the two bodies are exaggerated).

The red dot in the figure represents a nail fixed to the table, initially at a distance d from
the body on the left. At the initial moment, the string is perfectly taut and an impulse is
given to the left body, imparting a velocity v perpendicular to the string.

1. Using the position of the nail as the origin, find the trajectories of the two bodies
from the initial moment until the mass m2 reaches/passes the nail. How much time
elapses between these two moments?

2. Within the same time domain as the previous point, what is the minimum distance
between the two bodies?

3. After the second body has passed the nail, what type of motion do the two bodies
exhibit? Describe it.

Problem 1.3 (Atwood Machine with Massive String). An Atwood machine consists
of a pulley with negligible dimensions and two blocks of masses m1 and m2, connected
by a homogeneous cable of length 2l and mass M . Initially, the blocks are at the same
height and then released. Find the function y(t) that describes the temporal evolution of
the system until the lighter body collides with the pulley.
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Problem 1.4 (Non-Homogeneous Rough Plane). A plane is made of different ma-
terials, arranged in sectors as in Fig. 1. The N sectors all meet at the origin and have
different angular openings θi such that

∑N
i=1 θi = 2π. Each sector is characterized by the

friction coefficient µi.
A homogeneous disk of radius R and mass M is set into rotation around its axis with

angular velocity ~ω = ωẑ and is placed on the plane so that its center coincides with the
origin.

1. What is the acceleration vector of the disk immediately after it is placed on the
ground?

2. Find its initial angular acceleration

3. What happens after the initial moment?

Figure 1: Disk placed on a rough plane.

2 Gravitation and Central Forces

Problem 2.1 (Circular Orbit). A particle of mass m is subjected to a central force
that lets its orbit to be described by the polar equation r(θ) = 2R cos θ. Find the orbital
period of such orbit as a function of only m, R, and the force parameter.

r(θ) = 2R cos θ

r(θ)
R

θ

Figure 2: Circular orbit.

Problem 2.2 (Cardioid Orbit). A particle of mass m is subjected to a central force
that lets its orbit to be described by the polar equation r(θ) = R(1 + cos θ). Find the
orbital period as a function of only m, R, and the force parameter.
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r(θ) = R(1 + cos θ)

r(θ)

θ

Figure 3: Cardioidal orbit.

Problem 2.3 (Ballistic Missile). A ballistic missile is launched from a point A on the
Earth’s surface with an initial velocity ~v0, whose magnitude is less than the escape velocity,
at an angle α from the horizontal. After traveling on an elliptical trajectory, the missile
crashes at a certain point B, whose position depends on the launch conditions. The
situation is illustrated in Fig. 4.

A

~v0

B

α

Figure 4: Example of projectile motion within Earth’s gravitational field.

1. Find the parameters of the elliptical orbit as a function of v0 and α.

2. Determine the flight time and the distance between the launch and impact points on
the Earth’s surface. How far is the highest point from the Earth’s surface?

3. What should the initial velocity v0 be for a missile launched at a given angle α so
that it impacts at the antipode, as shown in Fig. 5?

A
~v0

B

α

Figure 5: Projectile motion toward the antipode.
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Problem 2.4 (Laplace–Runge–Lenz Vector). Find the equation of the orbits starting
from the Laplace–Runge–Lenz vector:

~A = ~p× ~L−mαr̂.

Problem 2.5 (Asteroid in the Solar System). An asteroid of mass m moves along a
parabolic trajectory around the Sun in the same plane as Earth’s orbit, which is assumed
to be circular with radius R. Let p be the minimum distance between the asteroid and
the Sun. Neglect the gravitational attraction between the asteroid and the Earth.

1. What is the angular momentum of the asteroid?

2. If p < R, what is the time T the comet spends inside Earth’s orbit?

3. What is the maximum possible value of T?

If p is smaller than the Sun’s radius, the asteroid will fall into it, increasing the mass of
the Sun by a fraction α ≡ m/MS.

4. How do the parameters of Earth’s orbit change as α varies?

If instead p = R, the parabola is tangent to the circle at a point, as shown in the
following figure.

R

A

Suppose that the asteroid undergoes an inelastic collision with the Earth at point A,
embedding itself into it.

5. How do the parameters of Earth’s orbit change?

6. How much heat is released as a result of the collision?

Problem 2.6 (L4 and L5). A planet of mass m orbits a star of mass M � m in a
circular orbit. Find the positions of the Lagrangian points L4 and L5.

3 Rigid Body

Problem 3.1 (Rigid Body in Orbit). A satellite orbits the Earth in a circular trajectory
of radius R. Calculate the torque with respect to the center of mass, given the inertia
tensor I of the satellite. Initially, the satellite’s three principal axes are oriented such
that one is radial, one is tangential, and the last one is perpendicular to the orbital plane.
Show that the orientation of the axes remains fixed in the frame rotating with the satellite.
Compute the period of small oscillations in the orbital plane.
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Problem 3.2 (Asymmetric Top). A rigid body with principal moments of inertia I1,
I2, I3 (with I1 < I2 < I3) moves freely without external forces, with angular momentum
~J ≡ Jz. The principal axes of the rigid body are denoted as n̂1, n̂2, n̂3, while the fixed
inertial reference frame axes are x̂, ŷ, ẑ. At time t = 0, the body is positioned such that
the axis n̂3 forms an angle θ0 � 1 with the ẑ-axis, and the component of the angular
velocity perpendicular to n̂3, ω

0
T , is much smaller than the parallel component, ω0

3.

1. Determine the time dependence of the angular momentum vector ~J along the three
principal axes of the top, choosing the time origin appropriately.

2. Write the time evolution equations for Euler angles θ, ψ, and φ.

3. Determine how the unit vector n̂3 evolves over time in the fixed inertial frame,
decomposing it into its coordinates (n3x, n3y, n3z).

4. Consider now an asymmetric top as described above, where the principal moments
of inertia are defined as I1 = A− ∆, I2 = A+ ∆, I3 = 2A (with 0 < ∆ < A), and
with general initial conditions. Show that the component ωT of the angular velocity
perpendicular to the axis n̂3 remains constant over time and derive the equation of
motion for ω3 to exploit this condition.

4 Calculus of Variations and Lagrangians

Problem 4.1 (Motion of a Charged Particle). Using the Lagrangian formalism, study

the motion of a particle with charge q subject to a central force ~F = f(r) r̂ and a uniform
magnetic field. Identify a cyclic coordinate and the corresponding conserved conjugate
momentum. Provide a physical interpretation of this conservation law.

Problem 4.2 (Chain of Springs). A system consists of N + 1 springs of natural length
L connecting N point masses of mass m, forming a linear chain with fixed endpoints
separated by a distance (N + 1)L. Write the Lagrangian of the system in terms of N
generalized coordinates describing the displacements from the equilibrium positions and
determine the spectrum of the N normal mode frequencies of the system.

Problem 4.3 (Maximal Gravitational Field). We have a piece of modeling clay with
mass m and uniform density ρ, and we want to shape it to obtain the maximum possible
gravitational field at a given point in space. What shape should it have? What is the
maximum gravitational field that can be achieved?

Problem 4.4 (Maximal Gravitational Field in 2D). Repeat the calculations of the
previous problem in the case of a 2D universe, where the gravitational field has a different
functional form.

Problem 4.5 (Snell’s Law for Spherically Symmetric Media). Determine how
Snell’s law is written in the case of spherically symmetric media, characterized by a
refractive index n = n(r).

Problem 4.6 (Light Ray Trajectories). In the desert, the refractive index depends on
altitude according to the law

n(z) = n0

√
1 + z/h,

where n0 > 1 and h is a characteristic length. Find the function z(x) describing the
trajectory of a light ray that starts from point A = (0, h) and reaches an observer at
B = (h, h).

Problem 4.7 (Superior and Inferior Mirages). Determine the conditions on the
refractive index of air n = n(z) required for the occurrence of superior and inferior mirages.
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5 Thermodynamics

Problem 5.1 (Leaking Container). Inside a container of volume V , whose walls are
perfect thermal insulators, there is an ideal monoatomic gas with molecular mass m,
density ρ0, and temperature T0. The container is placed in a perfect vacuum. A hole of
diameter d, smaller than the mean free path of the gas molecules, is opened on one of the
walls of the container.

• Assuming that the temperature of the gas inside the container remains constant over
time, what is the law that describes the variation of the gas density ρ(t)?

• The assumption made in the previous point is incorrect. Actually, the temperature
changes because faster molecules escape before slower ones. What is the correct
expression for ρ(t)?

Problem 5.2 (Two Compartments). A thermally insulated container is divided into
two compartments, each containing the same number of monoatomic gas molecules.
Initially, each compartment has the same temperature T0, the same pressure p0, and the
same volume. As shown in Fig. 6, two pistons are attached to walls 1 and 3 (which do not
conduct heat), while wall 2 is fixed and is a perfect heat conductor. The initial distance
between walls 1 and 2 is L, and the same holds for walls 2 and 3. At a certain point, the
pistons are activated, moving both walls 1 and 3 by L/2 to the right. The process is slow
enough to allow the two compartments to reach thermal equilibrium. What is the final
temperature of the gas after the process is completed?

Figure 6: Compartments and pistons.

Problem 5.3 (Equation of State). Determine the equation of state f(V, P, T ) = 0 of a
classical gas of N particles, using only the following information: at constant temperature,
its internal energy does not depend on volume and its enthalpy does not depend on
pressure.
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